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Motivation Heating model

* Developed using thermal resistance network, incorporating
building geometry, thermal properties and insulation.

e User can adjust thermal properties to simulate different
household types.

In summer, excess solar supply leads to solar panels being switched off.
In winter, limited solar energy forces reliance on natural gas for heating.

A solution is to couple solar collectors [1] with seasonal aquifer thermal
energy storage (ATES). Figure adapted from [2].

High-energy vs low-energy consumers
Inside temperature (18 — 24°C)

Heating demand (almost doubled)

Annual temperature profile for the modeled house Annual space heating and cooling
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Address literature gap on occupant behavior and building
characteristics through the development of a heat demand model.
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Modelling framework Short-term solution: Domestic storage tank

Domestic storage tank integrated with PVTs

PVT
modules

Single apartment equipped with two modules.
Heat storage tank, radius 0.45 m and height 0.60 m.
To minimize heat losses, storage insulation measures 0.10 m.

Numerical models are developed to simulate and evaluate heat storage .
solutions, considering heat loss mechanisms: .

O Conduction .

O Natural and external convection * Conduction loss, significantly impacting overall efficiency, with

O Radiation combined losses totaling approximately 0.30 MJ per hour. _, Hot
Modeled heat storage solutions, categorizing hours as excess or deficit « Small heat storage tank of 0.38 m3 is effective for short-term water
based on modules output versus demand: energy storage. Mfgl{gr

O Domestic storage tank (short-term)

O ATES-Doublet (long-term) Losses in water storage tank - first week of May

Temperature in water storage tank - first week of May
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Long-term solution: Aquifer thermal energy storage

e 100 apartments, each equipped with

Annual temperature distribution of warm and cold aquifers in ATES-doublet system

PVT module temperature with and without cooling - first week of June
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Dynamic model developed for PVT collector generating both solar electricity and heat. This work was carried out as a part of Simply

Positive project. The Dutch part is supported by

0.38 m?3 heat storage tank is not suitable for seasonal energy storage.
the RVO (the Netherlands Enterprise Agency).

ATES system for 100 homes is an effective seasonal heat storage with limited heat loss.
0 Offer long-term sustainability and efficiency for urban energy systems.

Cooling of PV cells has added advantage of increased efficiency and lifetime.
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